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Abstract 

A Monte Carlo program to simulate muon ioniaation cooling is 
outlined. A Vavilov-type distribution to represent reslrictedionieation 
energy losses is derived. Above the restriction threshold tie scatter- 
ing is treated event-by-event. Likewise ~-nucleus elastic scattering is 
simulated by a Gaussian below some angular threshold and treated 
individually above it. Other processes included are: incoherent pp 
scattering with nuclear protons, bremsstrahlung, pair production, and 
deep inelastic nuclear scattering. A small sample of results obtained 
with the code is included. 

1 Introduction 

Ionization cooling of muons is often mentioned in connection with muon 
storage rings, which-of late--have enjoyed considerable interest as an al- 

ternative to high energy ee linear colliders. For a review of the subject and 

further references, see [l, 21. Briefly, the muon beam is recirculated through 
a cooling target while an RP field makes up for average energy lost in the 
target. This acts on both transverse and longitudinal phase space. Muons 
lose transverse as well as longitudinal momentum in the target while only 
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the latter is restored by the RF thus resulting in a net transverse phase space 
reduction. Other processes which occur in the target-principally multiple 
Coulomb scattering-counteract the cooling and must be included in the 
analysis. Longitudinally, cooling is said to take place when the muon energy 
is in the ‘relativistic rise’ regime of the dE/dz 08 E curve since there the 
more energetic muons suffer a larger energy loss. But this is true only in the 
mean. Typically, the spread in energy loss incurred traversing a target far 
exceeds any cooling achievable from the difference in dE/dz. In fact, most 
of the relativistic rise in dE/dz is due to the concomitant increase in the 
maximum energy which can be imparted to an atomic e-. Thus the extra 
energy loss is due to relatively large energy transfers which may well cause 
net heating or even removal of the muon from the beam. This depends on 
muon energy as well as on initial and (desired) final longitudinal phase space. 
More promising is the proposal to place a wedge-shaped cooling target in a 
region of high momentum dispersion so that the more energetic muons tra- 
verse a thicker target and thus lose more energy. Like in the transverse case, 
longitudinal heating due to fluctuations in ionization energy loss and other 
processes occurs in the target and should be incorporated in the simulation. 

Analyses of cooling, such as ref. [z], me a differential equation to describe 
the merage change in emittame-separately for transverse and longitudi- 
nal phase space. Clearly some detail about the distribution in phase space 
is desirable. Correlations between transverse and longitudinal degrees of 
freedom are also expected to be present. Moreover, beam loss in a cooling 
ring is a first poemage problem, i.e., a muon experiencing a large enough 
energy loss or angular deflection leaves permanently its RF bucket or the 
admittance of the ring--without prospect of rejoining the beam by means 
of mme subsequent fluctuation. These effects are disregarded in the dif- 
ferential equation approach. In addition there are other processes to be 
considered: incoherent nuclear scattering, bremsstrahlung, pair production, 
and nuclear interaction of muons-all of which increase in importance with 
energy. Typically, these relatively rare processes cause large energy losses 
and are therefore best treated aa individual events. These are the key con- 
cerns addressed in this note and which form the basis of a Monte Carlo 
simulation program (sIMucooL). 

In sec. 2 the treatment of ionization losses in the simulation is described 
in some detail. This may be of interest for applications other than ionization 
cooling. Coulomb scattering is the subject of sec. 3. The remaining processes 
considered are relegated to 8ec. 4. Some results of a rather general nature 
on muon cooling are presented in sec. 5 along with a small sample of results 
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from the program but without launching into a systematic investigation of 
the subject. Concluding remarks are in sec. 6. 

2 Ionization Loss 

This section arrives at the formulae necessary to treat ionization losses in a 
Monte Carlo simulation. Some motications to commonly used energy loss 
distributions are described which (1) make them specific to muons by use of 
Bhabha’s scattering law for spin (J)=f/2particles on electrons and (2) allow 
introduction of a mhiction threshold of the energy loss in a single collision 
leaving larger losses to be treated as individual events and thus incorporate 
energy-angle correlations into the simulation. In connection with this last 
point it should be remembered that Coulomb scattering off nuclei is a larger 
source of angular dispersion than that off atomic electrons and the nuclear 
part is essentially uncorrelated with energy loss. Nonetheless, an accurate 
description of the phase space should include correlations present in the p 
part. 

2.1 Vavilov’s Distibution for J=1/2 

The distribution of ionization energy loss of a high energy particle traversing 
a target was fist derived by Landau [3]. Specifically, Landau assumes that 
the probability of an energy loss, E, in a single collision, follows an cm2 law 
and that total energy loss is small compared to E,,,,. (or that E,,,~. + cm). 
Vavilov [4] refined Landau’s procedure by including the (kinematically al- 
lowed) maximum energy loss in the derivation and adopting a more accurate 
~~‘(1 - @‘e/e,,,,,.) energy loss law, with p-as usual-the velocity in units 
of c. One price to pay for these refinements is that, whereas the Landau dis- 
tribution cm be represented by a single universal curve, Vavilov’s depends 
on two parameters: fi and n = 0.300465~m.Z/(~~A~.) where the latter 
is primarily a measure of target thickness, + (in gun-“). Tables of Vav- 
ilov’s distribution are presented in [5]. Other modifications to the formulae 
of Landau and Vavilcw are necessary for very thin targets [6] but these can 
presumably be neglected in the present context. 

The energy loss law assumed by Vavilov is correct for J=O particles. For 
J=I/~ particles-such as muons-it becomes [i’] 

P(e)cxK-1 1+&t; 
1 ( )I 

+ 1 
0 

3 



where & is the total energy of the incident particle. It is a simple matter 
to repeat Vavilov’s procedure with Bhabha’s formula which yields (in the 
notation of ref. [4]) 

f(z, A) = -&(l+~‘C-R’/a) 
~%n.. I 0 

- @cm (yA1 + n&) dy (2) 

where A means total energy loss in the sample and 

Fl = pa [lny - Ci(y)] - co* y - ySi(y) t gy 

A _ A-a 
1- - 

Gna. 
--IE 1tp”-c-s 

( 

Fa = y[hy-Ci(y)]+siny+,L3aSi(y)-~1~~sY. (5) 

Here R = c,,,,,./Eo while Si and Ci are the sine and cosine integrals and C 
is Euler’s constant. Setting R=O corresponds to Vavilov’s expression and 
Fl, Fa, A1 revert to fi, fi, X1 of Vavilov’s paper. Al is related to Landau’s X 

bv 

h1=n xtpM . ( ) 
Differences between J=O and l/2 are not very large. Fig. 1 compares (in the 
manner of ref. [4]) the quantity 4 = nc,,,,,.f plotted as a function of Landau’s 
X for ,k3=1 (which implies R=l) and for n=O.l, 1, and 10 [g]. As might be 
expected the J=1/2 distribution is slightly broadened visa-via J=U. 

2.2 Distribution for Restricted Loss 

Perhaps more relevant to the present application than specialization to 
3=1/Z is the introduction into eq. 2 of an-essentially arbitrary--energy 
loss limit in a single c&son, E.. Losses below E. can then be included on 
a statistical basis via a Vavilov-type distribution while those above it are 
treated individually. 

Again Vavilov’s procedure (for .7=1/Z) is easily applied to the restricted 
ionization loss case. All that is necessary is to replace c,.,,,,. everywhere 
by cc except in Bhabha’s scattering law which is, of course, unaffected by 
introducing an arbitrary .zE. The result is 

f(z, A) = _i,&+L--R:/a) - =hF' 
n=c J 0 

co8 (141 t d%) dy (7) 
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where 

.cl = 
A-% 

4 

F2 = ~[lny-Ci(y)]+siny+~lSSi(y)-~l~~y. (10) 

Now R, = eJE0, x is the average restricted energy loss (below cc as in, 
e.g., ref. [9]) and S = Q/E,,-. Setting es = %a* leads back to eq. 2. Setting 
R, = 0 yields Vavilov’s (J = 0) distribution for restricted losses. 

2.9 Implementation 

It is evident that random selection of an energy loss in a Monte Carlo sim- 
ulation is not feasible by analytical means, i.e., by inverting eq. 7. Even an 
accurate direct numerical calculation of eq. 7 requires sign&ant computa- 
tion time. However the present application lends itself to some simplifica- 
tions. First, all muons in any given cooling scenario will have nearly the 
same fi. As may be verified, the Vavilov distribution is not very sensitive to 
small changes in 0. Therefore p may be considered constant in any given 
simulation and fixed at, e.g., /3 corresponding to the nominal muon energy. 
A second simplification is use of a fixed steplength for muon transport- 
which fixes K for a given material. If, as anticipitated in a typical cooling 
scenario, a single target material is used then a single (tabulated) distribu- 
tion s&ices to treat the problem of ionization loss fluctuations. Use of a 
fixed steplength entails some corrections for edge effects. Needless to say, 
one can always resort to multiple tables and interpolation between them for 
increased accuracy. 

Integration of eq. ‘7 requires some care. The cosine in the integrand 
causes large cancellations after which a small positive number remains. A 
sure-footed way to proceed is to first locate the zeroes of the integrand 
(cosine) using Newton’s method and then to perform Romberg integration 
between the zeroes as intermediate limits until the contribution from a corn- 
plete cycle of the cosine argument falls below some small fraction of the 
cumulative total. L1 of eq. 9 is used as the variable of the distribution 
which easily converts into an energy loss. 

The choice of e= is left free in the Monte Carlo implementation. A smaller 
cc results in higher accuracy at the expense of longer computation times. 
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Selection of E larger than E= is made directly from Bhabha’s formula by 
choosing from an E-’ distribution between cc and cm,,. and taking account 
of the part of eq. 1 in square brackets by means of ‘rejection’. Because pe 
scattering is essentially a two-body process energy loss correlates uniquely 
with angle acquired, viz., 0 = G/p,, in the smalI angle approximation. 

3 Coulomb Scattering 

Coulomb scattering of muons can proceed coherently-ff the entire nucleus 
which remains in its ground state--or incoherently, where the muon scatters 
off an individual nuclear proton which gets ejected or promoted to an un- 
occupied state. Similar in spirit to the treatment of ionization losses, below 
some cut-off angle coherent scattering is treated as multiple scattering while 
for larger angles it is simulated as complete individual events. 

3.1 Multiple Coulomb Scattering 

According to [lo] the Gaussian approximation for projected angles in mul- 
tiple scattering holds quite well for angles below about Zo-independent of 
target thickness. For larger angles the Gaussian becomes quickly submerged 
in the single scattering tail which suggests that 2~ is a reasonable choice for 
t?,, the (spatial) cut-off angle, i.e., 6, = 2.0.0192-, where .! is a (fixed) 
step length, and Xo is the radiationlength of the material. For spatial angles 
(19.) the Gaussian corresponds to an exponential distribution in S,?. 

The introduction of 0. means a lower m compared with the usually cited 
overall rrns scattering angle. From [ll] one obtains 

where NA, is Avogadro’s number, p the density of the material, Q the line- 
structure constant, and f?~ = c~m.Z’/~ is an effective lower angular limit 
based on screening of the nuclear charge by atomic electrons. 

3.2 Coherent 

Above 0. the Rutherford scattering formula is used directly. Spin corrections 
introduce a weak dependence on nuclear species but are of even lesser impor- 
tance here than for energy loss off atomic e- and can be neglected. However, 

6 



Rutherford’s formula must be modified by a form factor to suppress large 
momentum transfers (which may break apart the nucleus and destroy the 
coherence). A simple form factor [13] is applied: FN = (1 + t/d)l where 
d = O.l64A-'I= GeV’ and t is the absolute value of the 4-momentum 
transfer. Monte Carlo implementation of this process begins by choosing a 
random number of events from a Poisson distribution based on the expected 
number in a single step. For each event-if any-an angle (> 0,) is selected 
from Rutherford’s formula while the form factor is included by rejection. 
A (small) momentum loss resulting from each encounter is applied to the 
muon. 

3.3 Incoherent 

Muons can also interact (incoherently) with individual protons inside the 
nucleus causing the struck proton to be either ejected or promoted to an 
(unoccupied) higher energy level. The model is somewhat easier to state 
in terms of momentum transfer rather than angle. In full, the basic pp 
scattering law is given by the Rosenbluth formula [12]. However, since the 
nuclear model used here is rather crude it makes more sense to again rely 
on Rutherford’s formula for (2 times) pp 

doldt = 4aZ(a/t)” 

modified by a proton form factor which damps high momentum transfers 
that may be accompanied by particle production (the latter is treated as a 
separate contribution, see sec. 4). From ref. [13]: 

4 = (1 t 7;; Y$O.71)4 (13) 

with 7 = t/4mi. The nucleus is approximated by a simple Fermi gas of the 
constituent nudeons and a struck proton must acquire a iinal momentum 
larger than the Fermi momentum for the collision to be allowed. On kine- 
matical grounds the energy transfer to the proton is required to be in excess 
*f Egap which corresponds to the first excited level of the target nucleus. This 
mimimum transfer also assigns a convenient upper limit of 4*Zc?/t,;, to 
the total cross section, where t,i,, is approximated by Zn~&s.~, its value for 
a proton at rest. Cuts on final momentum and effects of the proton form 
factor are simulated by rejection. Experimental values of &sap are provided 
for a few commonly used target nuclei with a 1 MeV default value elsewhere. 
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The total cross section is small enough that one can safely neglect multiple 
pp scatterings in a single nuclear encounter. 

When an event occurs on the basis of the above cross section, the algo- 
rithm proceeds by (i) selecting a Fermi momentum for the proton partner- 
but with only Ip.1 determined at this point. The sign of pz is randomly 
assigned according to the flux factor (E - p,)/ZE which favors ‘head-on’ 
over ‘rear-end’ collisions [14]. (ii) A value for t 1 t,,,in is then selected and 
tested by comparing a uniform random number 21s the proton form factor. 
If larger, the entire event is rejected. If smaller, (iii) final momenta are de- 
termined in the up center of mass and transformed back to the lab. Finally, 
(iv) it is determined if the struck proton emerges above the Fermi sea. If 
not, the event is scrapped. 

While refinements are obviously possible, see e.g. [15], such a model 
appears to describe quasi-elastic e--nucleus collisions quite well even for 
light nuclei [14]. 

4 Other Processes 

Three more processes are included which are important mainly at higher 
energies: bremsstrahlung, direct pair production, and deep inelastic nuclear 
interactions by the muons. All are fairly ‘hard’ processes in which a muon 
typically loses considerable energy making them potentially important for 
the present application. The procedures followed for each process are those 
described in some detail in [16]. Briefly, energy loss is determined randomly 
from an empirical function which represents a fit to results of more compli- 
cated ab initio calculations. For a given energy loss the rms angle, (~P)~ls, 
is found from another empirical formula which also approximates more ac- 
curate calculations. A random angle is then selected from a Gaussian with 
zero mean and o = (O”)‘la. This scheme is perhaps easier to justify for 
muon shielding calculations for which it is intended but it is adopted here as 
well. The angles incurred tend to be small compared with Coulomb scatter- 
ing and-at least to fist order-some correlation between angle and energy 
loss is kept so that no large error is expected as a result of adopting this 
procedure. 



5 Results 

This section aims to provide a few results of the SIMUCOOL model, mostly 
by way of illustration. There are too many parameters to attempt any type 
of systematic coverage here: specification of the initial muon beam in 6-D 
phase space, lattice of the cooling ring (or linac), thickness (or description of 
more complicated geometry-such as wedges) and composition of the target, 
its location(s) in the cooling ring along with any electric or magnetic fields 
which may be present at the target location. One must also specify how and 
where the restoring momentum is delivered, what are the criteria for removal 
from the beam as well as the number of turns over which to cool. In any given 
application the choices are likely to be considerably narrowed since many 
parameters will be specified or at least delimited by other considerations. 

One set of results which is generally useful is the expected number of 
events per unit length of target material in which an energy loss or angular 
threshold is ezceeded in a single cotlieion. This puts a lower limit on the 
number of particles acquiring such an energy loss or angular divergence 
since others may do so as a result of multiple encounters. Fig. 2 shows the 
number of events with AE/E above 0.03, 0.1, and 0.3 for a lithium target 
for each contributing mechanism as a function of muon energy. Fig. 3 is the 
corresponding plots for tungsten. Fig. 4 displays the total number of such 
events for four target materials. The double hump for AE/E > 0.3 reflects 
peaks in the energy dependence of deep inelastic nuclear scattering and large 
angle scattering off atomic e-, whereas the latter dominates completely for 
AE/E < 0.03. In a similar vein, fig. 5 shows total number of events per cm 
of target with A6 above 0.01 and 0.05 radians as a function of energy for four 
materials. Bremsstrahhmg, pair production, and deep inelastic scattering 
are omitted from consideration for these plots. These are not expected to 
make a significant contribution. As mentioned in sec. 4 these are treated in 
the simulation using the Gaussian approximation which would be unsuitable 
for inclusion in fig. 5, i.e., on a single event basis. 

By way of example, some results are presented of a simulation on a 
sample of 2500 muons of 1 GeV recirculating through a 1 cm thick beryl- 
lium target. The initial phase space is taken to be biGaussian both in x,x’ 
and in y,y’ with (nominal) transverse emittances es = l v = lo-’ and with 
@. = 0, = 1 cm. Particles with x,x’ (y,y’) above 3~7 are excluded (which 
reduces initial emittances by about 0.15). The longitudinal emittance is 
represented by a uniformly populated ellipse with axes Applp = f0.1 and 
A$ = ~tO.35 rad. Before each traversal of the target the phase space distribu- 
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tions are rotated (at some rate out of tune with the rotation around the ring). 
After each traversal the average dE/dz for collision losses corresponding to 
the nominal muon energy is restored to the muon along the beam direction. 
Muons which acquire an emittance in excess of twice the initial one (either 
longitudinally or in one of the transverse planes) are dropped from the simu- 
lation. Fig. 6 shows (x,y combined) transverse phase space progression with 
number of traversals. Cooling is clearly observed. For comparison, using 
Neufl’er’s formula [17], the equilibrium emittance is 1.67. lo-s-or 0.196 
on a relative basis-indicating good agreement for transverse phase space. 
Fig. 7 is the corresponding result for longitudinal space where some ‘heating’ 
is equally obvious which strongly suggests that most of the lost muons exit 
longitudinally. 

Fig. 8 presents the Vavilov (J=I/.Z) distribution for 0.5 and 0.55 GeV/c 
muons traversing a 1 cm beryllium target. The ‘knee’ around E,,,,,. is quite 
noticeable and is peculiar to the .I=l/.2 type. Also in fig. 8 is J,” c(fo.s6 - 
f0.s) & as a measure of how the (cumulative) diKerence in energy loss is 
distributed. As indicated, the median occurs close to A = 0.014 GeV-well 
outside the peak. Therefore most of the difference in (A) (which amounts 
to only 33 KeV) is due to relatively rare events while some heating is ex- 
pected with each traversal. As an estimate of the latter consider the case of 
two nnmns (or beams) of 0.5 and 0.55 GeV/c repeatedly traversing a 1 cm 
beryllium target with energy restoration. Ignoring all processes other than 
energy loss off atomic e-, this is equivalent to increasing target thidcness 
while shifting the ordinate (A) by the appropriate average energy loss. Fig. 9 
shows the distributions after 5, 10, and 25 turns for mono-energetic beams 
of 0.5 and 0.55 GeV/c. These must yet be folded by the initial momentum 
distribution of the beam as done in a Monte Carlo simulation. Results of 
the latter also benefit from including other significant processes as well as 
the fist passage effect which becomes important when the energy spread 
approaches that which can be accommodated by the RF. 

6 Concluding Remarks 

When the simulationis run neglecting all processes except multiple Coulomb 
scattering and with constant energy loss replenished along the beam direc- 
tion, results for transverse emittance essentially confirm the conclusions of 
ref. [2]: the difference between initial and equilibrium emittance decays ex- 
ponentially with number of traversals and with decay constant proportional 
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to the fractional energy loss per traversal. 
Matters become more complicated when other processes are included 

and limits are imposed on both longitudinal and transverse phase space. 
In transverse phase space the picture remains by and large correct but net 
longitudinal heating results in the example. Note that in fig. 7 the stated 
longitudinal emittance growth is considerably biased downward by excluding 
muons with emittances larger than twice the initial one. However, simply 
removing such exclusionary limits appears even less useful because it is unre- 
alistic to expect particles at a large emittance to remain with the beam and 
also because a few ‘outliers’ can easily distort statistics such as the average 
emittame-particularly in a relatively small sample. A downward bias is 
expected to be present in the transverse case as well since some particles 
may be lost by exiting the transverse phase space. However, judging from 
fig. 6 this bias appears to be minimal. These results thus tend to confirm 
the reservations expressed in the introduction about longitudinal cooling via 
the relativistic dE/dz rise and it appears that one must resort to wedges or 
more complicated geometries to do the job. In general, the relation between 
muon energy and cooling efficiency appears to be rather complex. ‘Strag- 
gling’ increases with +,,,. which in turn increases rapidly with p. (roughly 
quadratically in the few-GeV region [S]) thus favoring lower muon energies. 
However, one must clearly stay well above po z 0.3 GeV/c where dE/dz is 
minimum. Also at these lower momenta thinner cooling targets are indi- 
cated and muon decay becomes more probable. The information in figs. 2-5 
is also relevant in this regard. The above complications do not necessar- 
ily detract from the merits of ionization cooling but it appears that care 
must be taken in optimizing the available parameters to achieve worthwhile 
reductions in phase space. 

Acknowledgement. My thanks to R. Noble for helpful discussions and 
to C. Ankenbrandt and N. Mokhov for comments on the manuscript. 
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